Quantitative computed tomography of normal lung development in newborn and infants

Christian A. Barrera, MD;
Savvas Andronikou, MD, PhD, PhD; Ignacio E. Tapia, MD;
David Saul, MD; David M. Biko, MD;
Hansel J. Otero, MD.
Conflict of Interest

• Nothing to disclose
Background

- Lung maturation starts in-utero and continues after birth (first two years of life)
- Chest CT is routinely used for evaluation of acquired and congenital lung abnormalities
- Quantitative CT (qCT) offers additional quantitative information
 - Cystic Fibrosis
 - Asthma
 - Bronchiolitis Obliterans
Background

- Chronic Lung Disease of prematurity shows high heterogeneity on quantitative CT
- Small sample in patients between 0 – 2 years
- No equations for attenuation according to age
- Lack of information per lobe
To characterize lung development in children younger than 2 years of age using quantitative CT of the chest.
Materials and Methods: Patient population

- Retrospective study
- IRB-approved

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age 0 – 2 years</td>
<td>1. History of lung disease</td>
</tr>
<tr>
<td>2. Available non-contrast chest CT</td>
<td>2. History of thoracic radiation therapy</td>
</tr>
<tr>
<td>128-slice CT scanner</td>
<td>3. Acute respiratory symptoms</td>
</tr>
<tr>
<td>3. No abnormal findings in the lung</td>
<td></td>
</tr>
</tbody>
</table>

Materials and Methods: Image Segmentation

- 3D Slicer version 4.8.1
- A medical doctor and a pediatric radiologist with more than 20 years of experience
- Semi-automated threshold segmentation of the lung
- The major fissures and minor fissure were identified
Materials and Methods: Image analysis

- Parameters of quantitative CT analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Lung Density</td>
<td>Hounsfield Units</td>
</tr>
<tr>
<td>Lung Volume (L)</td>
<td>Liter</td>
</tr>
<tr>
<td>Lung Mass (g)</td>
<td>Function of volume and attenuation</td>
</tr>
</tbody>
</table>
Results: Demographic information

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Demographic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 48 children</td>
<td>• 15.1 ± 7.6 months</td>
</tr>
<tr>
<td>• 26 Boys and 18 girls</td>
<td>• BSA = 0.4 ± 0.1 m²</td>
</tr>
</tbody>
</table>
All patients had a diagnosis of cancer or a mass but none of them had positive findings on the chest CT.
Results: Quantitative information

Per patient (both lungs)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Lung Density (HU)</td>
<td>-571.7 ± 41.8</td>
<td>-571.7 ± 41.8</td>
</tr>
<tr>
<td>Lung Mass (g)</td>
<td>142.2 ± 43.1</td>
<td></td>
</tr>
<tr>
<td>Lung Volume (L)</td>
<td>0.32 ± 0.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RUP</th>
<th>RML</th>
<th>RLL</th>
<th>LUL</th>
<th>LLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Lung Density (HU)</td>
<td>-592.0 ± 46.2</td>
<td>-636.0 ± 42.1</td>
<td>-540.5 ± 53.4</td>
<td>-583.9 ± 45.4</td>
<td>-514.6 ± 54.4</td>
</tr>
<tr>
<td>Lung Mass (g)</td>
<td>21.1 ± 6.59</td>
<td>19.2 ± 6.2</td>
<td>37.0 ± 12.5</td>
<td>32.2 ± 10.2</td>
<td>32.6 ± 14.0</td>
</tr>
<tr>
<td>Lung Volume (L)</td>
<td>0.05 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.08 ± 0.03</td>
<td>0.07 ± 0.02</td>
<td>0.06 ± 0.03</td>
</tr>
</tbody>
</table>
Results: Quantitative information

Mean Lung Attenuation = \(-1.94\) (months) + 5.42

$r = -0.35, p = 0.01$
Results: Quantitative information

Lung Volume (L) = 0.01 (months) + 0.15
Lung Volume (mL) = 10.8 (months) + 1.59

$r = 0.75$, $R^2 = 0.57$, $p < 0.001$
Results: Quantitative information

\[r = 0.78, \quad R^2 = 0.62, \quad p < 0.001 \]

\[\text{Lung Mass} = 4.43 \text{ (months)} + 75.16 \]
Discussion

• Lung density decreases linearly after birth
 • Alveolarization
 • Gravitational dependence of lung attenuation
 • Low degree of inspiration in young children

• Lung volume increase linearly with age after birth
 • Highly dependent on age, sex, race, and height
 • Functional Residual Capacity

• Lung Mass showed the strongest correlation
 • Utility in diffuse lung disease
Normal lung parenchyma attenuation declines linearly with age. Lung volume and mass increases during the first two years of life.
Thank you

Questions?

Christian Barrera, MD
barreracac@email.chop.edu