Whole-body MR in children with cancer

Rutger A.J. Nievelstein
Department of Radiology & Nuclear Medicine
UMC Utrecht – Wilhelmina Children’s Hospital, Utrecht (NL)
Princess Maxima Center for Pediatric Oncology, Utrecht (NL)
Whole-body MR in children with cancer: Applications & possible impact on treatment and prognosis

• Introduction
 – imaging technique
• Applications
 – review of scientific literature
• Conclusions
 – impact on treatment and prognosis?
Introduction
WB-MRI

sliding table platform → multiple stations → reconstruction
WB-MRI

or

vertex – toe (head)neck – groin
WB-MRI

• WB-MRI is usually performed at 1.5T
 – higher field strengths (esp. when including functional imaging)
 • B0, B1 inhomogeneities
 • susceptibility artifacts

• Coils
 – Integrated quadrature body coil
 – Phased array surface coils
WB-MRI

Single non-integrated vs. Whole-body surface coil technology
WB-MRI

• Slice direction
 – coronal
 – axial (neck, thorax, abdomen)
 – sagittal (spine)

• Breathing technique
 – free breathing
 – thorax and abdomen:
 • breath-hold (T1) or respiratory triggering (STIR)
 • navigator techniques
Sequences

• T2 STIR
• T1/T2-weighted FSE/TSE
• Fat Sat T1/T2 (SPIR, SPAIR, mDIXON, ...)
• ceT1-weighted FSE/GE
• DWI
•

• Depending on clinical indication!
DWIBS
Diffusion weighted Whole body Imaging with Background body signal Suppression

Takahara T et al, Radiation Medicine 2004;22(4):275-282
Applications
Clinical applications

- Bone marrow imaging (metastases)
- Lymphoma
- Histiocytosis
- Neuroblastoma
- Cancer predisposition syndromes
- ...

Bone Marrow (protocol)

Chemical shift/oppose phase imaging

DWI (b1000)

ADC

sSTIR
Bone marrow imaging (metastases)

- systematic review (age < 21y)
 - 5 studies including
 - 132 patients (96 patients with solid tumors)
- patient groups & used reference tests were heterogeneous
 - unclear or high risk of bias
- sensitivity: 82-100%
- positive predictive value: very variable
 - influenced by the used reference standard

Smets AM et al, Pediatr Radiol 2018;48:241-252
Bone marrow imaging (metastases)

• WB-MRI vs. PET/CT
 – 13 patients, neuroblastoma
 – WB-DWIBS (b800), visual assessment only
 – reference: 123I-MIBG scintigraphy, bone scintigraphy, and CT

• Sensitivity, specificity, overall accuracy, PPV, NPV:
 – PET/CT: 90.7, 73.1, 80.3, 70.1, and 91.9%
 – WB-DWIBS: 94.7, 24.0, 53.0, 46.4 and 86.7%

• high incidence of false-positive findings on WB-MRI (75.9%)

Bone marrow imaging (metastases)

- MRI vs. PET-CT
 - 20 patients with Ewing sarcoma (112 osseous lesions), age 5-29y
 - T1 & STIR, coronal & sagittal
 - reference: histopathology or expert panel (all available data)
- 39% of metastases on MRI missed by PET-CT!
 - extensive active hematopoietic bone marrow
 - chemotherapeutic treatment
 - lesions smaller than 10 mm
- Patient-based: 92.3% concordance (one false-positive PET-CT)

Lymphoma (protocol)
Lymphoma (protocol)
Lymphoma Staging

• very good agreement between WB T2 STIR and PET/CT (sens., spec., kappa (k))\(^1,2\):
 – nodal sites: 93-98%, 98-99%, 0.91-0.97
 – extranodal sites: 89-91%, 99-100%, 0.91-0.94

• WB-MRI (STIR & DWI) superior to contrast enhanced CT\(^3\)
 – sens. 95.5% vs. 86.4%

• no additional value of DWI to conventional MRI sequences\(^1,4\)

1 Punwani S et al, Radiology 2010;255:182–190
2 Littooij AS et al, Eur Radiol 2014;24:1153–1165
3 Regacini R et al, Pediatr Radiol 2018;48:638–647
Lymphoma Staging

- WB-MRI vs. multi-modality reference standard:
 - 50 pediatric patients
 - cSTIR, DWI, tT2/STIR, tce T1
 - reference: all imaging and clinical investigations (incl. PET/CT), long-term follow up

- **44%** discordance for full patient staging (TPR, FPR and kappa)
 - nodal disease: 91%, 1%, 0.93
 - extranodal disease: 79%, < 1%, 0.86

1Latifoltojar A et al, Eur Radiol 2019;29:202–212
Lymphoma

Early response assessment

- early recognition of chemotherapy response or failure
- PET/CT recommended as imaging technique of first choice
 - not officially outside clinical trials
 - good in identifying treatment failure
 - negative PET does not guarantee good prognosis!\(^1\)
- several (pilot) studies using WB-MRI
 - inconclusive results
 - presence/absence of inverse correlation ADC vs. SUV

\(^1\)Adams HJ et al, Br J Haematol 2015;170:356-366
Lymphoma

Early response assessment

• WB-MRI vs. multi-modality reference standard:
 – 50 pediatric patients
 – cSTIR, DWI, tT2/STIR, tce T1
 – reference: all imaging and clinical investigations (incl. PET/CT), long-term follow up

• WB-MRI response classification:
 – correct in 25/38 evaluable patients (66%)
 – underestimating response in 26% ($\kappa = 0.30$, 95% CI 0.04–0.57)

¹Latifoltojar A et al, Eur Radiol 2019;29:202–212
Histiocytosis (protocol)

cT1

cSTIR

cce T1 fatsat

DWI (b800)

ADC

sSTIR
Histiocytosis

• mostly small studies
 – 2-15 patients
 – cSTIR and (ce) cT1-weighted sequences
• compared to skeletal survey & bone scintigraphy1,2:
 – additional bony lesions
 – extra-osseous disease involvement

1Goo HW et al, Pediatr Radiol 2006;36:1019–1031
2Steinborn et al, RoFo 2008;180:646–653
Histiocytosis

• WB-MRI vs. PET/CT:
 – 15 patients (21 scans)
 – STIR, (ce) T1-weighted sequences (cor, sag, trans)
 – reference: histopathology, follow-up imaging

• overall sensitivity and specificity:
 – WB-MRI: 87%, 47%
 – PET/CT: 67%, 76%

• main limitation MRI: false-positive findings (follow-up)!

Histiocytosis

• Combined MRI/PET analysis improved sensitivity
 – decreasing false-negative rate of PET (primary staging)
 – decreasing false-positive rate of WB-MRI (follow-up, larger lesions)

Histiocytosis

- WB-MRI vs. Skeletal survey vs. Bone scintigraphy:
 - 46 patients, initial staging
 - STIR (cor, sag), cT1-weighted (fatsat), ce 3D T1-weighted (fatsat)
 - reference: clinical and follow-up imaging (consensus 2 radiologist)
- sensitivity, accuracy (concordance rate):
 - WB-MRI: 99%, 0.98
 - Skeletal survey: 56.6%, 0.91
 - Bone scintigraphy: 38.4%, 0.83
- no significant difference in false-positive rates!

Neuroblastoma (protocol)

cT2 STIR (whole body)

c3D T2
tT1 fatsat
ce tT1 fatsat
DWI (b800)
ADC
sT1
sSTIR
Neuroblastoma (protocol)
Neuroblastoma

Staging & response assessment

Neuroblastoma

Imaging Defined Risk Factors (MRI, CT)

Descriptions of IDRFS

<table>
<thead>
<tr>
<th>Anatomic Region</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple body compartments</td>
<td>Ipsilateral tumor extension within two body compartments (i.e., neck and chest, chest and abdomen, or abdomen and pelvis)</td>
</tr>
<tr>
<td>Neck</td>
<td>Tumor encasing carotid artery, vertebral artery, and/or internal jugular vein</td>
</tr>
<tr>
<td></td>
<td>Tumor extending to skull base</td>
</tr>
<tr>
<td></td>
<td>Tumor compressing trachea</td>
</tr>
<tr>
<td>Cervicothoracic junction</td>
<td>Tumor encasing brachial plexus roots</td>
</tr>
<tr>
<td></td>
<td>Tumor encasing subclavian vessels, vertebral artery, and/or carotid artery</td>
</tr>
<tr>
<td></td>
<td>Tumor compressing trachea</td>
</tr>
<tr>
<td>Thorax</td>
<td>Tumor encasing aorta and/or major branches</td>
</tr>
<tr>
<td></td>
<td>Tumor compressing trachea and/or principal bronchi</td>
</tr>
<tr>
<td></td>
<td>Lower mediastinal tumor infiltrating costovertebral junction between T9 and T12 vertebral levels</td>
</tr>
<tr>
<td>Thoracoabdominal junction</td>
<td>Tumor encasing aorta and/or vena cava</td>
</tr>
</tbody>
</table>

Thoracoabdominal junction

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor encasing aorta and/or vena cava</td>
</tr>
<tr>
<td>Tumor infiltrating porta hepatitis and/or hepatoduodenal ligament</td>
</tr>
<tr>
<td>Tumor encasing branches of superior mesenteric artery at mesenteric root</td>
</tr>
<tr>
<td>Tumor encasing origin of celiac axis and/or origin of superior mesenteric artery</td>
</tr>
<tr>
<td>Tumor invading one or both renal pedicles</td>
</tr>
<tr>
<td>Tumor encasing aorta and/or vena cava</td>
</tr>
<tr>
<td>Tumor encasing iliac vessels</td>
</tr>
<tr>
<td>Pelvic tumor crossing sciatic notch</td>
</tr>
<tr>
<td>Intraspinal tumor extension (wherever the location) provided that more than one-third of spinal canal in axial plane is invaded, the perimedullary leptomeningeal spaces are not visible, or the spinal cord signal intensity is abnormal</td>
</tr>
<tr>
<td>Infiltration of adjacent organs and structures</td>
</tr>
<tr>
<td>Pericardium, diaphragm, kidney, liver, duodenopancreatic block, and mesentery</td>
</tr>
</tbody>
</table>

Source. -- Reference 8. Conditions that should be recorded but are not considered IDRFS are multifocal primary tumors, pleural effusion with or without malignant cells, and ascites with or without malignant cells.

Neuroblastoma

• WB-MRI vs. I-123 MIBG scintigraphy\(^1\)
 – 28 patients (50 scans, 22 staging/28 follow-up)
 – (ce) T1-weighted, T2-weighted, STIR (cor, sag, transv)
 – reference: histopathology, follow-up imaging (≥ 6 months)

• Sensitivity and specificity:
 – WB-MRI: 69%, 85%
 – I-123 MIBG: 86%, 77%
 – combined analysis: 99%, 95%

\(^1\)Pfluger T et al, AJR Am J Roentgenol 2003;181(4):1115–1124
Neuroblastoma (lymph node metastases)

- WB-MRI vs. PET/CT
 - 13 patients, neuroblastoma
 - WB-DWIBS (b800), visual assessment only
 - reference: 123I-MIBG scintigraphy, bone scintigraphy, and CT
- Sensitivity, specificity, overall accuracy, PPV, NPV:
 - PET/CT: 100, 98.7, 98.9, 95.0, and 100%
 - WB-DWIBS: 94.7, 85.3, 87.2, 62.1, and 98.5%

Neuroblastoma

• role of DWI in differentiating subtypes?1,2
 – 15 & 19 patients
 – (ce) T1, T2, STIR, DWI (b50, b400, b800)
 – NB (10/15), GNB (2/1), GN (4/3)

• significantly difference in ADC NB vs. GNB/GN
 – considerable overlap
 – ADC cutoff ≤ 1.05 (1.11): sens. 100%, spec. 93,8\%2

1Gahr N et al, Eur J Radiol 2011;79(3):443–446
2Peschmann AL et al, Eur Radiol Exp 2019;30:6
Neuroblastoma

• role of DWI in predicting outcome?\(^1\)
 – 19 patients
 – (ce) T1, T2, STIR, DWI (b50, b400, b800)
 – NB (15), GNB (1), GN (3)
• low baseline ADC predictive of tumour progression/relapse
 – ADC ≤ 0.80
• during therapy:
 – increasing ADC predictive of relapse-free survival
 – decreasing ADC indicator of poor prognosis

\(^1\)Peschmann AL et al, Eur Radiol Exp 2019;30:6
Cancer Predisposition Syndrome (protocol)
Cancer Predisposition Syndrome (protocol)
Cancer predisposition syndromes

• Whom to screen?¹
 – risk >5% in first two decades
 – risk 1-5% in rapidly progressive/aggressive cancers

¹Brodeur GM et al, Clin Cancer Res 2017;23:e1–e5
Cancer predisposition syndromes

• AACR Pediatric Working Group recommendations:
 – Li–Fraumeni syndrome, NF1, NF2 with schwannomatosis, hereditary retinoblastoma, constitutional mismatch repair deficiency syndrome and hereditary paraganglioma pheochromocytoma syndrome
 – (DICER1 syndrome, rhabdoid tumor predisposition syndromes and Rothmund–Thomson syndrome)
• imaging protocol depends on type of predisposition syndrome!

¹Greer ML, Pediatr Radiol 2018;48:1364–1375
Cancer predisposition syndromes

- 25 patients, hereditary retinoblastoma
- WB-MRI (1-5): T1, T2 STIR (transv, sag)
- reference: biopsy or dedicated MRI
- results:
 - 5 suspicious bone lesions: 2 malignant, 3 benign
 - 1 interval osteosarcoma
 - sens. 66.7%, spec. 92.1%

1Friedman DN et al, Pediatr Blood Cancer 2014;61(8):1440–1444
Cancer predisposition syndromes

- 24 patients, cancer predisposition syndromes
- WB-MRI: T1, T2, STIR (cor, ax), T2 HASTE (cor, sag, ax)
- reference: biopsy and follow-up
- Results:
 - 9 suspicious lesions (2 high-risk, 2 moderate risk, 2 low-risk); only 1 proven malignancy
 - sens. 100 % (95 % CI 6–100 %), spec. 94 % (82–98 %), NPV 94 %, PPV 25%

Anupindi SA et al, Am J Roentgenol. 2015;205(2):400–8
Cancer predisposition syndromes

• main limitations:
 – potential risk of false-positive findings
 – high percentage of incidental findings!

• interpretation reserved to expert radiologists
 – appropriate risk stratification
 – minimize unnecessary additional imaging/interventions

1 Friedman DN et al, Pediatr Blood Cancer 2014;61(8):1440–1444
2 Anupindi SA et al, Am J Roentgenol. 2015;205(2):400–8
Conclusions
Conclusions

• no or mostly small (pilot) studies
 – < 25 patients
 – largest cohorts: lymphoma (50), LCH (46)

• no standardization of imaging protocols
 – definition of WB-MRI

• contradictory results
Conclusions

• Good radiation free alternative for anatomical imaging (staging)
 – lymphoma, LCH, neuroblastoma (IDRFs)

• Bone marrow metastases
 – high incidence of false-positive/normal findings

• Screening
 – potential risk of incidental/false-positive findings

• Response assessment & prognosis?
 – underestimation of response (lymphoma, LCH)
 – prediction of outcome (neuroblastoma)